Character Sequence Models for Colorful Words
نویسندگان
چکیده
We present a neural network architecture to predict a point in color space from the sequence of characters in the color’s name. Using large scale color–name pairs obtained from an online color design forum, we evaluate our model on a “color Turing test” and find that, given a name, the colors predicted by our model are preferred by annotators to color names created by humans. Our datasets and demo system are available online at http://colorlab.us.
منابع مشابه
A new model for persian multi-part words edition based on statistical machine translation
Multi-part words in English language are hyphenated and hyphen is used to separate different parts. Persian language consists of multi-part words as well. Based on Persian morphology, half-space character is needed to separate parts of multi-part words where in many cases people incorrectly use space character instead of half-space character. This common incorrectly use of space leads to some s...
متن کاملFinding words in alphabet soup: Inference on freeform character recognition for historical scripts
This paper develops word recognition methods for historical handwritten cursive and printed documents. It employs a powerful segmentation-free letter detection method based upon joint boosting with histogram-of-gradients features. Efficient inference on an ensemble of hidden Markov models can select the most probable sequence of candidate character detections to recognize complete words in ambi...
متن کاملA Part of Speech Estimation Method for Japanese Unknown Words using a Statistical Model of Morphology and Context
We present a statistical model of Japanese unknown words consisting of a set of length and spelling models classified by the character types that constitute a word. The point is quite simple: different character sets should be treated differently and the changes between character types are very important because Japanese script has both ideograms like Chinese (kanji) and phonograms like English...
متن کاملAttending to Characters in Neural Sequence Labeling Models
Sequence labeling architectures use word embeddings for capturing similarity, but suffer when handling previously unseen or rare words. We investigate character-level extensions to such models and propose a novel architecture for combining alternative word representations. By using an attention mechanism, the model is able to dynamically decide how much information to use from a wordor characte...
متن کاملExploiting Chinese character models to improve speech recognition performance
The Chinese language is based on characters which are syllabic in nature. Since languages have syllabotactic rules which govern the construction of syllables and their allowed sequences, Chinese character sequence models can be used as a first level approximation of allowed syllable sequences. N -gram character sequence models were trained on 4.3 billion characters. Characters are used as a fir...
متن کامل